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Synopsis 

The thermomechanical behavior of particle composites was investigated in their transition region. 
In particular, the value of the glass-transition temperature Tg, which constitutes an upper limit for 
the structurally important glassy region, was examined. According to experimental evidence existing 
in the literature the introduction of a reinforcing filler in a polymeric matrix causes Tg of the latter 
to increase, unless mechanical imperfections counterbalance the reinforcing effect or even produce 
a Tg for the composite which is lower than that of the matrix. Based on mechanical theories, valid 
for the mechanical moduli of viscoelastic particle composites, a model was introduced that explains 
why the glass transition of composite materials may be reduced in some cases, whereas it may be 
increased in others. The concept of interphase between inclusions and matrix was used for the de- 
velopment of the model. Interphase is assumed to be a region, which is created between the matrix 
material and the filler particles, both considered as homogeneous and isotropic, whose thermome- 
chanical properties and volume fraction may be determined from the overall thermomechanical 
behavior of the composite. 

INTRODUCTION 

The glassy region of polymeric composites is structurally important for the 
material because, in this region, the material behaves almost elastically and 
possesses satisfactory mechanical properties. Therefore, its upper limit in a 
temperature scale, defined by the second, or glass, or &transition temperature, 
Tg, is of practical interest. Glass-transition temperature Tg is a sensitive pa- 
rameter with respect to every aspect of the material microstructure, or any factor 
related to the external conditions, or the loading mode. For example, with epoxy 
polymer matrices the following characteristics influence the behavior of the 
composite: the molecular structure of the prepolymer,l the molecular structure 
of the curing agent,2 the percentage of the curing agent in relation with the 
stoichiometric a m ~ u n t , ~  or the composition of the curing agent, if it is a mixture 
of more than one reactants? and, finally, the heat treatment, i.e., the postcuring 
time and temperature. Moreover, mechanical imperfections, such as voids, flaws, 
or microcracks in the matrix, as well as the load history of the material are ex- 
pected to influence Tg considerably. There are now many experimental data 
showing the changes in Tg of a polymer under the influence of the surface of a 
filler.5 These data have been obtained by applying various methods, i.e., dila- 
tometric, dynamic measurements of the mechanical properties or specific heat, 
NMR, dielectric relaxation, radiothermoluminescence, etc. Since each of these 
methods has its own particular limitations, the results obtained are not always 
mutually comparable, while the general character of change in Tg with rise in 
filler concentration is maintained, the rate of change is nonidentical. This rate 
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of change presents a maximum when low- frequency methods (dilatometry or 
calorimetry) are used. As the frequency of the action is raised, AT, de- 
creases. 

In Ref. 6 an extensive experimental study was carried out on an epoxy matrix 
in which various fillers, such as different types of glass microspheres and fibers, 
were embedded. It was found that, in all occasions, Tg was increasing with the 
amount of filler at  least, up to a certain extent. Similar behavior was observed 
with the rubber-carbon black systems7-10 in which the rubber molecules are 
attached to the filler particles by strong forces approaching the nature of chemical 
bonds.ll 

According to the results of Ref. 12, the rise of Tg with any particular filler 
content depends on the total surface of the filler and the conditions of formation 
of the contact of filler with polymer. A contradicting result, however, has ap- 
peared in Refs. 13 and 14, concerning a DGEBA resin, cured with 8 phr trieth- 
ylene-tetramine and filled either with aluminum particles or three different 
particle sizes of iron powders. The samples of these composites were tested by 
means of flexural vibrations or examined in a thermomechanical analyzer. As 
may be seen from Figures 10-12 in Ref. 14, the glass-transition temperature T, 
in all cases was found to be considerably lower for the composite than for the 
respective matrix. As a rule, T, was now found to be decreasing with increasing 
particle size, while no similar behavior was observed with the storage moduli and 
the loss factors of the composite. Reduced Tg was also found by Molotkov et 
al.15 for resin matrices, filled with finely cut fiber glass and aluminum parti- 
cles. 

By introducing in the cases of composites the concept of interphase, it is pos- 
sible to explain this contradicting behavior of the composite materials, as far as 
it concerns the glass-transition behavior. The interphase, having different 
thermomechanical and viscoelastic properties than the polymeric matrix, con- 
siderably affects the respective behavior of the composite. Based on some 
simplifying assumptions, a theoretical estimate of the variations of glass tran- 
sition was attempted, which actually proved the important role of interphase 
on the properties of the composite material. 

REPRESENTATION OF THE MODEL 

The model, introduced in this paper, is based on the mechanical behavior of 
the particle composite materials. This behavior has already represented in a 
previous paper.16 However, for the better understanding of the analysis a brief 
discussion will be attempted here. First of all, it should be clarified that the 
composite material was treated as a three-phase material in which the three 
distinct regions are as follows. The first region is the polymeric matrix, which 
is considered as viscoelastic, and is characterized by its modulus of elasticity Em. 
The second region is occupied by the dispersed particles, which constitute the 
inclusions or fillers and have a modulus of elasticity Ef.  

A third phase is created around the fillers and is constituted from macro- 
molecules of the polymer with different physical and physicochemical properties 
than the macromolecules of the polymeric matrix. In some cases these molecules 
create strong bonds with the particles of fillers and this fact is described by a large 
value of the adhesion coefficient, expressing the adhesion efficiency between the 
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polymeric matrix and the filler. In other cases, however, the bonds between filler 
and matrix are weak, and this corresponds to a low value of the adhesion coeffi- 
cient K. 

This phenomenon can be explained by an adsorption interaction between the 
matrix material close to the fillers and the filler particles, as well as by the me- 
chanical imperfections such as voids, cracks, flows, field singularities, and po- 
sitions of imperfect adhesion which are concentrated in a thin layer around each 
inclusion. Moreover, this interphase layer contains the zones where shrinkage 
stresses are developed during the curing process, which are in many cases the 
main cause of the above-mentioned an0malies.l7-~9 

The intermediate phase, or interphase, is considered as consisting of a ho- 
mogeneous and isotropic material of finite thickness, with a different modulus 
of elasticity Ei than the two other moduli. The representative volume element 
of this model is constituted from three separate regions with the respective 
V,,Vf,Vi volume fractions of the three phases, i.e., the matrix, the filler, and 
the interphase. According to the analysis of Ref. 16 a simple relationship was 
established connecting the moduli of elasticity of the composite material to the 
particular moduli of the phases, which has the form: 

(1) 
This equation constitutes a generalized form of the well-known law of mixtures 

for a composite material with three phases. 
The simplifications which were made for establishing this relation cancel out 

all secondary effect terms, containing Poisson’s ratios for each phase. However, 
the contribution of the interphase to the modulus of the composite was retained 
through the term Ei Vi, since it was assumed that this contribution always plays 
a significant role in the definition of the transition region of the composite. Now 
by applying the correspondence principle of linear viscoelasticity and starting 
from eq. (1) we may obtain an expression for the loss factor of the composite 
material q(w), which depends on the frequency w of the applied vibrational load. 
The loss factor is a convenient parameter for the determination of Tg,  since its 
maximum value corresponds to the center of the transition region and expresses 
the amount of energy dissipated as a fraction of the energy stored in the system. 
At the transition frequency wg the loss factor assumes its maximum value, hence 
it is valid that: 

E = EfVfK + EmVm + EiVi 

We denote by E k ,  EL the loss and the storage moduli of the matrix, E:, E: the 
loss and the storage moduli of the interphase, qm, qi the loss factors of the matrix 
and interphase, respectively. In applying the correspondence principle to eq. 
(1) use will be made of the following expressions: 

Em = EL(w) + iE;(w) = EL[1+ i q m ( w ) ] ,  

Ei = EI(w) + iE;(w) = E:(w)[l  + iqi(~)], 
q n ( ~ )  = E”,w)/E;(w) 
q i ( ~ )  = EZ(u)/E:(w) (3) 

Equation (3) lead to the expression for the loss factor q(w) of the composite given 
by: 



3022 THEOCARIS AND SPATHIS 

If wg, wgm represent the transition frequencies of the composite material and 
the matrix, respectively, the relative magnitude of these quantities may define 
any relation between the glass-transition temperatures of the matrix Tgm and 
of the composite Tg. Indeed, if wg s wgm, then Tg 2 Tgm and inversely, if wg 
> wgm, then Tg < Tgm. This result is based on the fact that the loss factor takes 
its peak value in the middle of the transition zone, where the glass transition is 
defined. In the same area the creep compliance master curves acquire their 
maximum slope. 

The relative position of the transition frequencies wg and wgm could now be 
determined by finding the derivative dq(o)ldw and defining its value at w = ugm. 
Then, if this value is negative, it is valid that wg < wgm, because in this case the 
loss factor q(w) has already reached its maximum value. Inversely, if [bq(w) l  
bw] > 0, then the loss factor q(w)  will still be in the zone where its value 
is increasing and so it will take its peak value at  wg > wgm. The two cases of 
relative values of the loss factor are schematically presented in Figure 1. 

Now following this reasoning we define the derivative of eq. (4) and we 
have 

where 

and 

ylw=wgm = O 

In the above expression [eq. (5)]  the quantities (bEL/bw)lw=wgm and 

(a) (b) 
Fig. 1. Typical curves for the loss factors of the matrix and the composite in their transition region 

in terms of frequency w. (a) Case wg < wgm; (b) case wgm < 0,. 
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(dEI/dw) always have positive values because the storage moduli are always 
increasing functions of frequency in the transition zone. The contribution of 
the term (dEI/dw) is very small as compared to the contribution of the term 
(bEL/bw) because it is multiplied by the volume fraction of the interphase Vi 
which always takes values smaller than 5% of the total volume of the composite. 
For better illustration of this reasoning we define the ratio: 

(9) 

If we now express the loss and storage moduli of the matrix and the interphase 
as functions of the frequency w,  these quantities are generally expressed by the 
relations: 

( a ~ : / a w ) q ~ v ~  - - ( ~ E : / ~ U ) ( E : / E : )  vi 
(dEJbw)qrnVrn (dE;/dw) (E",Eh) V, 

EL = fl(W)Em, 
EI = f i(w)Ei,  

E k  = f 2 ( ~ ) E r n  
EL = fz(w)Ei 

where the functions f l ( w )  and f2(w) are model dependent and particular for each 
model. Thus, for the Maxwell model they take the form: 

whereas, for the Voigt model, they are expressed by: 

f 2 b )  = w7 f l ( U )  = 1, 

In these expressions it was assumed that the relaxation time r of the matrix and 
the interphase are approximately equal. 

After introducing these functions in eq. (9) this ratio takes the form: 

(bE:/dw)(EI/E;) Vi - Ei Vi 

where, according to Ref. 16, VJV, < 0.05 and Ei/E, N 7, so that this ratio has 
a value smaller than 0.35. 

The positive quantity AE also yields a small contribution in eq. (5) because 
it takes the following form: 

(dEL/dw)(Ek/EL) Vrn Ern Vm 

with 

3 log(E;E,)I > O  
d w  w=wgm 

[EI(ugm) - Ek(wgm)] = fz(wgrn)(Ei - Em) > 0 
0 < VmVi << 1 

However, the quantity AE has a negative contribution in eq. (5) because it is 
always a positive quantity and it is subtracted from the rest of eq. (5). 
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( a )  

Fig. 2. Typical curves for the loss factors of the matrix and the interphase in their transition region. 
(a) Case a,; < ugm; (b) case a,,,, < agi. 

After introducing these simplifications to relation (5) we come to the conclusion 
that the sign of the expression (dq/dw)lo=wgm depends mainly on the terms 
(dE,ldw) I w = w g m  and (dq i ldw)  I w = o g m .  The first term (dEk ldw 1 w=wgm is always 
positive, whereas the value of the second term ( d q i l d w )  I w=wgm depends on the 
relative position of the glass transition of the interphase. If Tgi > Tgm , then 
wgi > ugm, This means that the loss factor of interphase has reached its peak 
value at a frequency smaller than wgm and it has already started decreasing with 
(dqi/dw)lo=ogm < 0 [see Fig. 2(a)]. 

If Tgi < T,,, the opposite behavior takes place and this is indicated in Figure 
203). 

So what exactly occurs in a composite material is a matter defined from the 
interphase region of the polymer around the fillers. Namely, in materials where 
there are strong bonds between the fillers and the polymeric matrix, the interlayer 
bounds should have glass-transition temperatures larger than the rest of the 
matrix and the composite presents a higher value for Tg. 

On the contrary, for composite materials with weak bonds between fillers and 
matrix, i.e., with poor adhesion between them and with a lot of impurities around 
the fillers, the glass transition of the interphase should be smaller than the rest 
of the matrix and, consequently, the glass-transition temperature Tg of the 
composite is reduced. 

By comparing the two previous terms we can also derive important results 
about the contribution of the volume content of the filler on Tg of the composite. 
According to the conclusions of Ref. 15, the volume fraction of interphase is 
nonlinearly increased as the volume content of the filler increases. This has the 
meaning that the contribution of the term ( d q i l d w )  I w=wgm becomes larger with 
increasing content of fillers, because it is multiplied by the volume fraction Vi, 
while the contribution of the positive term dEk/dw will be decreased linearly 
as V,  decreases. 

C'ONCLUSIONS 

The value of the glass-transition temperature, which constitutes an upper limit 
for the structurally important glassy region, was examined in this paper. Ac- 
cording to extensive experimental evidence existing in the literature, the intro- 
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duction of a reinforcing filler in a polymeric matrix causes Tg of the latter to 
increase in some cases, and to decrease in others. 

Based on a model for the definition of the modulus of elasticity of the particle 
composites, an explanation of this anomalous behavior of Tg was given. The 
basic consideration of this model was the concept of interphase, i.e., a phase 
created from matrix material around each particle of the filler, which has dif- 
ferent properties than the rest of the matrix material. This difference leads to 
two well-separated regions of the composite with two different glass transitions. 
The combination of these two glass transitions determines the total glass tran- 
sition of the composite material. 

In the case where the Tgi of interphase is larger than the Tgn of the matrix, 
the composite increases its glass transition, as compared to the respective Tgm, 
while in the case where Tgi < Tgm the particle composite possesses a lower glass 
transition than Tgm. This phenomenon, which depends on the mechanical 
imperfections between matrix and filler particles, presents different degrees of 
strength and may counterbalance partially or totally the reinforcing effect of 
the dispersed particles of the composite material. 
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